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Abstract

In the present paper, we make a model of a boundary value problem and then obtain its solution involving
products of | -function and a general class of polynomials.
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I. Introduction

The operational techniques are important tools to compute various problems in various fields of sciences
which are used in the works of Chaurasia [4], Chandel, Agrawal and Kumar [2], Chandel and Sengar [3] and
Kumar [5] to find out several results in various problems in different field of sciences and thus motivating by
this work, we construct a model problem for temperature distribution in a rectangular plate under prescribed
boundary conditions and then evaluate its solution involving A -function with product of general class of
polynomials.

The general class of polynomials is defined by Srivastava and Panda [11, 12] as:
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Where, m,..., M, are arbitrary positive integers and the coefficients F[n,,k;;...;n,,K,] are arbitrary constants

real or complex . Finally, we derive some new particular cases and find their applications also.
The I-function introduced by Saxena [6] will be represented and defined as follows :
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P, 0 (i=1..r),mnare integers satisfying 0<n<p,, 0<m<gq,(i=1..r)ris finite
a;, B, a;, Py arerealand a; b;,a;,b; are complex numbers such that
a;(b, +v) = B,(a; —v—k) for v,k =01,2,...
We shall use the following notations:

A =, o)) (a5, a5 n+1,pi;B*=(bj’IBj)l,m1(bji’ﬂji)m+l,qi

1. A Boundary Value Problem
We consider a rectangular plate such that,
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Where the boundary value conditions are:
2 2,
aL;+g=a,0<x<g,0<y<E (2.1
ox~ oy 2
a_U :6_U :O’O<y<9 (2.2)
OX|g OX|.a 2
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U(X'O)=0’0<X<E (2.3)
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Where, 0 < X < % provided that Re(77) > -1, > 0.

U (X, y) is the temperature distribution in the rectangular plate at point (X, Y).

I11. Main Integral
In our investigations, we make an appeal to the modified formula due to Kumar [5] as,
a
% zx\  2mzx al'(n+1)
J' Ccos— | cos dx = (3.1)
0 a a 2”*1(Z+m+1j(727—m+1j

Where, M is positive integer and Re(77) > —1, then we evaluate an applicable integral
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Provided that F[n,,k;;...;n,, K, ]are arbitrary functions of n,K;;...;n, K., real or complex independent of
X, Y, p , the conditions of (2.4) and (3.1) are satisfied and
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Where

Q= Za +Zﬂ Za —Zﬂj,>o

j=n+1 j=m+1

IV. Solution of Boundary Value Problem
In this section, we obtain the solution of the boundary value problem stated in the section (2) as using (2.1),
(2.2) and (2.3) with the help of the techniques referred to Zill [13] as:

U(X,y)=Aoy+ZApsinhZmycoszlom(,0<x<3,0<y<E (4.1)
oo a a 2 2

For y = % , we find that

U( g]_f(x)_%+ZA sinh p”bCOSZpaﬂ 0<x<% (4.2)

Now making an appeal to (2.4) and (4.2) and then interchanging both sides with respect to
a
X from O to > we derive,

2 [n/m][n/m]

b\/_ Z z ( nl)mlkl r)mrk,

kl r=
k1 yk,
F[nl’kl " r’kr]I (k) k | (43)
1 r-
Where
L (K) = 170G e [ 2
In ko] A
y p PhTTARe) (4.9)

B*,(—%—pkl —...—pkr;aj

WWW.ijera.com 107 |Page



Yashwant Singh Int. Journal of Engineering Research and Applications WWWw.ijera.com
ISSN : 2248-9622, Vol. 5, Issue 1( Part 3), January 2015, pp.105-110

Where all conditions of (2.4), (3.1) and (3.3) are satisfied.

2mzx
Again making an appeal to (2.4) and (4.2) and then multiplying by COS il

both sides and thus integrating

a
that result with respect to X from O to E we find,
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Provided that all conditions of (2.4), (3.1) and (3.3) are satisfied.
Finally, making an appeal to the result (4.1), (4.3) and (4.5), we derive the required solution of the boundary
value problem,
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Where ,
Provided that all conditions of (2.4), (3.1) and (3.3) are satisfied.

V. Expansion Formula

b
With the aid of (2.4) and (4.6) and then setting Yy = E , We evaluate the expansion formula
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provided that all conditions of (2.4), (3.1) and (3.3) are satisfied.
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VI. Particular Cases and Applications
In this section, we do some setting of different parameters of our results and then drive some particular

cases as stated here as taking m, =...=m_ =y and

Ky +.. 4K,
Fln, k;...on. k. 1= h L in(1.1)
vy A+ p_nl_"'_nr)y(k1+...+kr)
We get,
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And thus, we obtain an integral for product of a class of polynomials of several variables and cosine functions as
a T 2, M/ 2, N7
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Provided that all conditions of (2.4), (3.1) and (3.2) are satisfied.
The solution of the given problem is
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When 0 < X< > O<y< > provided that all conditions of (2.4), (3.1) and (3.3) are satisfied.

The expansion formula is
n/y
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® COST[nl/y] [n/y1 hy . 1
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a
When 0 < X < E , provided that all conditions of (2.4), (3.1) and (3.3) are satisfied. Further, making an use of

the result due to Chandel, Agarwal and Kumar ([1]p. 27, wg. (1.4) and (1.5)).

p—

lim H (72 [ﬁ X—J -
n 1erey )

P P

lim HO 7P (%, ., %) = 97 (%, h)..gl (%, h) (6.5)
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----- r

To the results (6.2), (6.3) and (6.4), we get another different relation in similar way.
Further again, applying the relation

95 (x,—

1/4)=2"H,_(x) (6.6)

To the above results, we evaluate another result for Hermite polynomials by same techniques.
Other special cases and applications of our results may be obtained by making use of the work of Chandel and
Sengar [3], Srivastava and Karlsson [9] and Srivastava and Manocha [10] , due to lack of space we omit them.
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